Question:

Let $P = \begin{pmatrix}cos \frac{\pi}{4}&-sin \frac{\pi}{4}\\ sin \frac{\pi}{4}&cos \frac{\pi}{4}\end{pmatrix}$ and $X = \begin{pmatrix}\frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}}\end{pmatrix}$. Then $P^{3}X$ is equal to

Updated On: Jul 25, 2024
  • $ \binom{0}{1}$
  • $\begin{pmatrix}\frac{-1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}}\end{pmatrix}$
  • $ \binom{-1}{0}$
  • $\begin{pmatrix}-\frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{2}}\end{pmatrix}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Given, $P=\begin{pmatrix}\cos \frac{\pi}{4} & -\sin \frac{\pi}{4} \\ \sin \frac{\pi}{4} & \cos \frac{\pi}{4}\end{pmatrix}=\begin{pmatrix}\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{pmatrix}$ $\Rightarrow P=\frac{1}{\sqrt{2}}\begin{pmatrix}1 & -1 \\ 1 & 1\end{pmatrix}$ Now, $\ P^{2} =P \cdot P=\frac{1}{2}\begin{pmatrix}1 & -1 \\ 1 & 1\end{pmatrix}\begin{pmatrix}1 & -1 \\ 1 & 1\end{pmatrix} $ $=\frac{1}{2}\begin{pmatrix}1-1 & -1-1 \\ 1+1 & -1+1\end{pmatrix} $ $ =\frac{1}{2}\begin{pmatrix}0 & -2 \\ 2 & 0\end{pmatrix}=\begin{pmatrix}0 & -1 \\ 1 & 0\end{pmatrix} $ $ P^{3} =P \cdot P^{2}=\frac{1}{\sqrt{2}}\begin{pmatrix}1 & -1 \\ 1 & 1\end{pmatrix} \cdot\begin{pmatrix}0 & -1 \\ 1 & 0\end{pmatrix} $ $ =\frac{1}{\sqrt{2}}\begin{pmatrix}0-1 & -1-0 \\ 0+1 & -1+0\end{pmatrix} $ $=\frac{1}{\sqrt{2}}\begin{pmatrix}-1 & -1 \\ 1 & -1\end{pmatrix} $ Also, given $X=\begin{pmatrix}1 / \sqrt{2} \\ \frac{1}{\sqrt{2}}\end{pmatrix}=\frac{1}{\sqrt{2}}\begin{pmatrix}1 \\ 1\end{pmatrix}$ $ \therefore P^{3} X =\frac{1}{\sqrt{2}}\begin{pmatrix}-1 & -1 \\ 1 & -1\end{pmatrix} \cdot \frac{1}{\sqrt{2}}\begin{pmatrix}1 \\ 1\end{pmatrix} $ $ =\frac{1}{2}\begin{pmatrix}-1-1 \\ 1-1\end{pmatrix}=\frac{1}{2}\begin{pmatrix}-2 \\ 0\end{pmatrix}=\begin{pmatrix}-1 \\ 0\end{pmatrix}$
Was this answer helpful?
0
0

Concepts Used:

Matrices

Matrix:

A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.

The basic operations that can be performed on matrices are:

  1. Addition of Matrices - The addition of matrices addition can only be possible if the number of rows and columns of both the matrices are the same.
  2. Subtraction of Matrices - Matrices subtraction is also possible only if the number of rows and columns of both the matrices are the same.
  3. Scalar Multiplication - The product of a matrix A with any number 'c' is obtained by multiplying every entry of the matrix A by c, is called scalar multiplication. 
  4. Multiplication of Matrices - Matrices multiplication is defined only if the number of columns in the first matrix and rows in the second matrix are equal. 
  5. Transpose of Matrices - Interchanging of rows and columns is known as the transpose of matrices.