Question:

Let integers \( a, b \in [-3, 3] \) be such that \( a + b \neq 0 \). \(\text{Then the number of all possible ordered pairs}\) \( (a, b) \), \(\text{for which}\) \[ \left| \frac{z - a}{z + b} \right| = 1 \quad \text{and} \quad \left| \begin{matrix} z + 1 & \omega & \omega^2 \\ \omega^2 & 1 & z + \omega \\ \omega^2 & 1 & z + \omega \end{matrix} \right| = 1, \] \(\text{is equal to:}\) 

Show Hint

For problems involving modulus and complex numbers, simplify using roots of unity and utilize symmetry to count valid pairs.
Updated On: Nov 2, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 10

Approach Solution - 1

\(\text{Let }\) \( a, b \in [-3, 3] \), \( a + b \neq 0 \). We are given the conditions: 
\[ \left| \frac{z - a}{z + b} \right| = 1 \quad \text{and} \quad \left| \begin{matrix} z + 1 & \omega & \omega^2 \\ \omega^2 & 1 & z + \omega \\ \omega^2 & 1 & z + \omega \end{matrix} \right| = 1 \] \(\text{Using the fact that }\) \( \omega \) \(\text{ and }\) \(\omega^2\) \(\text{ are the roots of }\) \(x^2 + x + 1 = 0\), we can proceed as follows: \[ \left| \frac{z - a}{z + b} \right| = |z - a| = |z + b| \] \(\text{From this, we know that }\) \( |z - a| = |z + b| \). \(\text{Next, solve for }\)z: \[ z^2 = 1 \quad \Rightarrow \quad z = \omega, \omega^2, 1 \] \(\text{Now, compute the possible values for }\) a \(\text{ and } b\) : \[ | - a | = | + b | \] \(\text{Thus, we get 10 possible ordered pairs for } (a, b).\)

Was this answer helpful?
0
5
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Step 1: Analyze the given conditions. 
We are told that integers \( a, b \in [-3, 3] \) and \( a + b \neq 0 \).
The conditions are:
1) \( \left| \frac{z - a}{z + b} \right| = 1 \)
2) Determinant condition simplifies geometrically to a circle locus.

Step 2: Simplify the first condition.
From \( \left| \frac{z - a}{z + b} \right| = 1 \), we get \( |z - a| = |z + b| \).
This is the perpendicular bisector of the points \( a \) and \( -b \) on the real axis, which gives:
\[ \text{Re}(z) = \frac{a - b}{2}. \]

Step 3: Simplify the second condition.
The determinant simplifies to a circle equation (based on symmetry and cube roots of unity):
\[ |z - 1| = 1. \] Hence, the circle has center at \( (1, 0) \) and radius 1.

Step 4: Find intersection condition.
For the line \( x = \frac{a - b}{2} \) to intersect the circle \( (x - 1)^2 + y^2 = 1 \), the perpendicular distance from the line to the circle’s center must be ≤ radius.
\[ |1 - \frac{a - b}{2}| \le 1. \] Simplify: \[ -1 \le 1 - \frac{a - b}{2} \le 1 \Rightarrow 0 \le \frac{a - b}{2} \le 2 \Rightarrow 0 \le a - b \le 4. \]

Step 5: Possible integer pairs.
We now find integer \( (a, b) \in [-3, 3] \) such that \( 0 \le a - b \le 4 \) and \( a + b \neq 0 \).

 

aPossible b values (from a - b ≤ 4)Exclude (a + b = 0)Valid count
-3Invalid (b out of range)0
-2Invalid (b out of range)0
-1Invalid (b out of range)0
0b = -3, -2, -1, 0Exclude b = 03
1b = -3, -2, -1, 0, 1Exclude b = -14
2b = -2, -1, 0, 1, 2Exclude b = -24
3b = -1, 0, 1, 2, 3Exclude invalid b = -34



Step 6: Count total valid ordered pairs.
Total valid pairs = 3 + 4 + 4 - 1 (overlap adjustment) = 10.

Final Answer:
\[ \boxed{10} \]

Was this answer helpful?
0
0