Let \( g(x) = ax + b \).
Now function \( f(x) \) is continuous at \( x = 0 \).
\[ \therefore \lim_{x \to 0} f(x) = f(0) \] \[ \lim_{x \to 0} \left( 1 + x \over 2 + x \right)^{1 \over x} = b \] \[ \Rightarrow 0 = b \] \[ \therefore g(x) = ax \]
Now, for \( x > 0 \),
\[ f'(x) = \frac{1}{x} \left( 1 + x \over 2 + x \right)^{1 \over x} \cdot \frac{1}{(2 + x)^2} + \left( 1 + x \over 2 + x \right)^{1 \over x} \cdot \ln \left( 1 + x \over 2 + x \right) \cdot \frac{1}{x^2} \] \[ f'(1) = \frac{1}{9} - \frac{2}{3} \ln \left( \frac{2}{3} \right) \]
And \( f(-1) = g(-1) = -a \)
\[ a = 2 \ln \left( \frac{2}{3} \right) - \frac{1}{9} \] \[ g(3) = 2 \ln \left( \frac{2}{3} \right) - \frac{1}{3} \] \[ = \ln \left( \frac{4}{9 e^{-1/3}} \right) \]
If \( y = e^{{2}\log_e t} \) and \( x = \log_3(e^{t^2}) \), then \( \frac{dy}{dx} \) is equal to:
A body of mass 1000 kg is moving horizontally with a velocity of 6 m/s. If 200 kg extra mass is added, the final velocity (in m/s) is: