Let \( f_i: \mathbb{R} \to \mathbb{R} \) for \( i = 1, 2 \) be defined as follows:
\[f_1(x) = \begin{cases} \sin\left(\frac{1}{x}\right) + \cos\left(\frac{1}{x}\right), & \text{if } x \neq 0 \\0, & \text{if } x = 0 \end{cases}\]
and
\[f_2(x) = \begin{cases} x\left(\sin\left(\frac{1}{x}\right) + \cos\left(\frac{1}{x}\right)\right), & \text{if } x \neq 0 \\0, & \text{if } x = 0 \end{cases}\]
Then, determine the continuity of these functions at \( x = 0 \):