Put $y=0$ in the functional equation: $$f(x)=f(x)f'(0)+f'(x)f(0).$$ Using $f(0)=1$ this gives $$f(x)=f(x)f'(0)+f'(x)\quad\Rightarrow\quad f'(x)=(1-f'(0))f(x).$$
So $f$ satisfies the linear ODE $f'(x)=c\,f(x)$ with constant $c=1-f'(0)$. Hence $$f(x)=Ae^{cx}.$$ Using $f(0)=1$ gives $A=1$, so $f(x)=e^{cx}$.
Now compute $f'(0)=c e^{0}=c$. But by definition $c=1-f'(0)=1-c$, so $2c=1\Rightarrow c=\tfrac{1}{2}$. Therefore $$\boxed{f(x)=e^{x/2}}.$$
Thus $\ln f(n)=\dfrac{n}{2}$ and $$\sum_{n=1}^{100}\ln f(n)=\sum_{n=1}^{100}\frac{n}{2}=\frac{1}{2}\cdot\frac{100\cdot101}{2}=\boxed{2525}.$$
2525 (Option 2)
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \( f(x + y) = f(x) f(y) \) for all \( x, y \in \mathbb{R} \). If \( f'(0) = 4a \) and \( f \) satisfies \( f''(x) - 3a f'(x) - f(x) = 0 \), where \( a > 0 \), then the area of the region R = {(x, y) | 0 \(\leq\) y \(\leq\) f(ax), 0 \(\leq\) x \(\leq\) 2 is :
The IUPAC name of the following compound is:
The compounds which give positive Fehling's test are:
Choose the CORRECT answer from the options given below: