
To solve the problem, we are given the functional equation \( f(x+y) = f(x) + f(y) + 1 - \frac{2}{7}xy \) and \( f(x) = (2+3a)x^2 + \frac{a+2}{a-1}x + b \). We want to find \( 28 \sum_{i=1}^5 f(i) \).
1. Substitute \(f(x)\) into the functional equation:
Substitute \( f(x) = (2+3a)x^2 + \frac{a+2}{a-1}x + b \) into the functional equation \( f(x+y) = f(x) + f(y) + 1 - \frac{2}{7}xy \):
\( (2+3a)(x+y)^2 + \frac{a+2}{a-1}(x+y) + b = (2+3a)x^2 + \frac{a+2}{a-1}x + b + (2+3a)y^2 + \frac{a+2}{a-1}y + b + 1 - \frac{2}{7}xy \)
2. Expand and simplify:
Expand \( (x+y)^2 \) and simplify the equation:
\( (2+3a)(x^2 + 2xy + y^2) + \frac{a+2}{a-1}(x+y) + b = (2+3a)x^2 + \frac{a+2}{a-1}x + b + (2+3a)y^2 + \frac{a+2}{a-1}y + b + 1 - \frac{2}{7}xy \) \( (2+3a)x^2 + 2(2+3a)xy + (2+3a)y^2 + \frac{a+2}{a-1}x + \frac{a+2}{a-1}y + b = (2+3a)x^2 + (2+3a)y^2 + \frac{a+2}{a-1}x + \frac{a+2}{a-1}y + 2b + 1 - \frac{2}{7}xy \)
3. Equate coefficients:
Equate the coefficients of the \(xy\) term and the constant terms:
\( 2(2+3a) = -\frac{2}{7} \) and \( b = 2b + 1 \)
4. Solve for \(a\) and \(b\):
From \( 2(2+3a) = -\frac{2}{7} \), we get \( 2+3a = -\frac{1}{7} \), \( 3a = -\frac{15}{7} \), \( a = -\frac{5}{7} \).
From \( b = 2b + 1 \), we get \( b = -1 \).
5. Find \(\frac{a+2}{a-1}\):
Substitute \( a = -\frac{5}{7} \) into \(\frac{a+2}{a-1}\):
\( \frac{a+2}{a-1} = \frac{-\frac{5}{7} + 2}{-\frac{5}{7} - 1} = \frac{\frac{9}{7}}{-\frac{12}{7}} = -\frac{9}{12} = -\frac{3}{4} \)
6. Write the explicit form of \(f(x)\):
Substitute \( a = -\frac{5}{7} \), \( b = -1 \), and \(\frac{a+2}{a-1} = -\frac{3}{4}\) into \( f(x) = (2+3a)x^2 + \frac{a+2}{a-1}x + b \):
\( f(x) = (2 + 3(-\frac{5}{7}))x^2 - \frac{3}{4}x - 1 = (2 - \frac{15}{7})x^2 - \frac{3}{4}x - 1 = -\frac{1}{7}x^2 - \frac{3}{4}x - 1 \)
7. Compute the sum \(\sum_{i=1}^5 f(i)\):
\( \sum_{i=1}^5 f(i) = \sum_{i=1}^5 \left( -\frac{1}{7}i^2 - \frac{3}{4}i - 1 \right) = -\frac{1}{7} \sum_{i=1}^5 i^2 - \frac{3}{4} \sum_{i=1}^5 i - \sum_{i=1}^5 1 \) \( = -\frac{1}{7} \left( \frac{5(5+1)(2(5)+1)}{6} \right) - \frac{3}{4} \left( \frac{5(5+1)}{2} \right) - 5 \) \( = -\frac{1}{7} (55) - \frac{3}{4} (15) - 5 = -\frac{55}{7} - \frac{45}{4} - 5 = -\frac{220 + 315 + 140}{28} = -\frac{675}{28} \)
8. Compute \(28 \sum_{i=1}^5 f(i)\):
\( 28 \sum_{i=1}^5 f(i) = 28 \left( -\frac{675}{28} \right) = 675 \)
Final Answer:
The value of \( 28 \sum_{i=1}^5 f(i) \) is \( {675} \).
Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function satisfying $f(0) = 1$ and $f(2x) - f(x) = x$ for all $x \in \mathbb{R}$. If $\lim_{n \to \infty} \left\{ f(x) - f\left( \frac{x}{2^n} \right) \right\} = G(x)$, then $\sum_{r=1}^{10} G(r^2)$ is equal to
If the domain of the function \( f(x) = \dfrac{1}{\sqrt{10 + 3x - x^2}} + \dfrac{1}{\sqrt{x + |x|}} \) is \( (a, b) \), then \((1 + a)^2 + b^2\) is equal to:
1 Faraday electricity was passed through Cu$^{2+}$ (1.5 M, 1 L)/Cu and 0.1 Faraday was passed through Ag$^+$ (0.2 M, 1 L) electrolytic cells. After this, the two cells were connected as shown below to make an electrochemical cell. The emf of the cell thus formed at 298 K is:
Given: $ E^\circ_{\text{Cu}^{2+}/\text{Cu}} = 0.34 \, \text{V} $ $ E^\circ_{\text{Ag}^+/ \text{Ag}} = 0.8 \, \text{V} $ $ \frac{2.303RT}{F} = 0.06 \, \text{V} $
An organic compound (X) with molecular formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ is not readily oxidised. On reduction it gives $\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}(\mathrm{Y})\right.$ which reacts with HBr to give a bromide (Z) which is converted to Grignard reagent. This Grignard reagent on reaction with (X) followed by hydrolysis give 2,3-dimethylbutan-2-ol. Compounds (X), (Y) and (Z) respectively are:
Given below are the pairs of group 13 elements showing their relation in terms of atomic radius. $(\mathrm{B}<\mathrm{Al}),(\mathrm{Al}<\mathrm{Ga}),(\mathrm{Ga}<\mathrm{In})$ and $(\mathrm{In}<\mathrm{Tl})$ Identify the elements present in the incorrect pair and in that pair find out the element (X) that has higher ionic radius $\left(\mathrm{M}^{3+}\right)$ than the other one. The atomic number of the element (X) is