Consider:
\[ g(f(x)) = \begin{cases} g(\log_e x), & x > 0 \\ g(e^{-x}), & x \leq 0 \end{cases} \]
For \(x > 0\), we have:
\[ f(x) = \log_e x \implies g(f(x)) = g(\log_e x) = \log_e x \quad (\text{since } \log_e x \geq 0) \]
For \(x \leq 0\), we have:
\[ f(x) = e^{-x} \implies g(f(x)) = g(e^{-x}) = e^{-x} \quad (\text{since } e^{-x} > 0 \text{ for all } x \leq 0) \]
Thus, the function \(g(f(x))\) is given by:
\[ g(f(x)) = \begin{cases} \log_e x, & x > 0 \\ e^{-x}, & x \leq 0 \end{cases} \]
Analyzing this function, we observe:
For \(x > 0\), \(g(f(x)) = \log_e x\) is an increasing function but not onto as it maps to \((0, \infty)\).
For \(x \leq 0\), \(g(f(x)) = e^{-x}\) is a decreasing function and does not cover the entire range of real numbers.
Therefore, \(g \circ f\) is neither one-one nor onto.
A body of mass 1000 kg is moving horizontally with a velocity of 6 m/s. If 200 kg extra mass is added, the final velocity (in m/s) is: