Question:

\(\int \frac{e^{x^2}\left(2x+x^{3}\right)}{\left(3+x^{2}\right)^{2}} dx\)  is equal to :

Updated On: Aug 29, 2023
  • $\frac{e^{x^2}}{\left(3+x^{2}\right) } + k $
  • $\frac{1}{2} \frac{e^{x^2}}{\left(3+x^{2}\right)^{2}} + k $
  • $\frac{1}{4} \frac{e^{x^2}}{\left(3+x^{2}\right)^{2}} + k $
  • $\frac{1}{2} \frac{e^{x^2}}{\left(3+x^{2}\right)} + k $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

The correct answer is D:\(\frac{1}{2}\frac{e^{x^{2}}}{(3+x^2)}+k\)
Put \(x^{2}=t \Rightarrow 2 x d x=d t\)
\(I=\int \frac{e^{x^{2}}\left(2+x^{2}\right) x d x}{\left(3+x^{2}\right)^{2}}=\frac{1}{2} \int e^{t} \frac{(2+t)}{(3+t)^{2}} d t \)
\(=\frac{1}{2} \int \frac{e^{t}(3+t-1)}{(3+t)^{2}} d t=\frac{1}{2} \int e^{t}\left[\frac{1}{3+t}-\frac{1}{(3+t)^{2}}\right] d t \)
\(=\frac{1}{2} e^{t} \frac{1}{3+t}+k\left[\because \frac{d}{d t}\left(\frac{1}{3+t}\right)=\frac{-1}{(3+t)^{2}}\right] \)
\(=\frac{1}{2} \frac{e^{x^{2}}}{3+x^{2}}+k\)
Was this answer helpful?
1
0

Concepts Used:

Integration by Parts

Integration by Parts is a mode of integrating 2 functions, when they multiplied with each other. For two functions ‘u’ and ‘v’, the formula is as follows:

∫u v dx = u∫v dx −∫u' (∫v dx) dx

  • u is the first function u(x)
  • v is the second function v(x)
  • u' is the derivative of the function u(x)

The first function ‘u’ is used in the following order (ILATE):

  • 'I' : Inverse Trigonometric Functions
  • ‘L’ : Logarithmic Functions
  • ‘A’ : Algebraic Functions
  • ‘T’ : Trigonometric Functions
  • ‘E’ : Exponential Functions

The rule as a diagram: