Question:

If $ y={{\sec }^{-1}}\left( \frac{1}{\sqrt{1-{{x}^{2}}}} \right), $ then $ \frac{dy}{dx} $ is equal to

Updated On: Jun 23, 2024
  • $ \frac{1}{\sqrt{1-{{x}^{2}}}} $
  • $ \frac{2}{\sqrt{1-{{x}^{2}}}} $
  • $ \frac{1}{\sqrt{1+{{x}^{2}}}} $
  • $ \frac{2}{\sqrt{1+{{x}^{2}}}} $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Given, $ y={{\sec }^{-1}}\left( \frac{1}{\sqrt{1-{{x}^{2}}}} \right) $
Put, $ x=\sin \theta $
$ \therefore $ $ y={{\sec }^{-1}}\left( \frac{1}{\sqrt{1-{{\sin }^{2}}\theta }} \right) $
$ \Rightarrow $ $ y={{\sec }^{-1}}(\sec \theta )=\theta $
$ \Rightarrow $ $ y={{\sin }^{-1}}x $
$ \Rightarrow $ $ \frac{dy}{dx}=\frac{1}{\sqrt{1-{{x}^{2}}}} $
Was this answer helpful?
0
0

Concepts Used:

Continuity

A function is said to be continuous at a point x = a,  if

limx→a

f(x) Exists, and

limx→a

f(x) = f(a)

It implies that if the left hand limit (L.H.L), right hand limit (R.H.L) and the value of the function at x=a exists and these parameters are equal to each other, then the function f is said to be continuous at x=a.

If the function is undefined or does not exist, then we say that the function is discontinuous.

Conditions for continuity of a function: For any function to be continuous, it must meet the following conditions:

  • The function f(x) specified at x = a, is continuous only if f(a) belongs to real number.
  • The limit of the function as x approaches a, exists.
  • The limit of the function as x approaches a, must be equal to the function value at x = a.