Step 1: Use identity to relate \(x^4 + y^4\) with \(x^2 + y^2\) and \(xy\). We start with the identity: \[ x^4 + y^4 = (x^2 + y^2)^2 - 2x^2y^2 \] Step 2: Use the given: \[ x^2 + y^2 = 25, \quad xy = 12 \Rightarrow x^2y^2 = (xy)^2 = 144 \] Step 3: Substitute in the identity: \[ x^4 + y^4 = (25)^2 - 2(144) = 625 - 288 = 337 \].
Find the variance of the following frequency distribution:
| Class Interval | ||||
| 0--4 | 4--8 | 8--12 | 12--16 | |
| Frequency | 1 | 2 | 2 | 1 |