Question:

If $x > 0,$ the $ 1 + \frac{\log_{e^{2}}x}{1!} + \frac{\left(\log_{e^{2}}x\right)^{2}}{2!} + ....=$

Updated On: May 24, 2022
  • x
  • $x^2$
  • 2x
  • $\sqrt{x}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

$1+ \frac{\log_{e^{2}}x}{1!} + \frac{\left(\log_{e^{2}} x\right)^{2}}{2!} + .... $
$=e^{\log}e^{2} {^{x} }= e^{\frac{1}{2} \log_{e}x} = e^{\log_{e} \sqrt{x}} = \sqrt{x}$
Was this answer helpful?
0
0