Question:

If two vectors \(\vec{A}\) and \(\vec{B}\) having equal magnitude \(R\) are inclined at an angle \(\theta\), then

Updated On: Nov 19, 2024
  • \(|\vec{A} - \vec{B}| = \sqrt{2} R \sin \left(\frac{\theta}{2}\right)\)
  • \(|\vec{A} + \vec{B}| = 2 R \sin \left(\frac{\theta}{2}\right)\)
  • \(|\vec{A} + \vec{B}| = 2 R \cos \left(\frac{\theta}{2}\right)\)
  • \(|\vec{A} - \vec{B}| = 2 R \cos \left(\frac{\theta}{2}\right)\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

The magnitude of the resultant vector \( R' \) of two vectors \( A \) and \( B \) inclined at an angle \( \theta \) is given by:

\[ R' = \sqrt{a^2 + b^2 + 2ab \cos \theta}. \]

Here \( a = b = R \), so:

\[ R' = \sqrt{R^2 + R^2 + 2R \cdot R \cos \theta} = \sqrt{2R^2 (1 + \cos \theta)}. \]

Using the identity \( 1 + \cos \theta = 2 \cos^2 \left(\frac{\theta}{2}\right) \), we get:

\[ R' = \sqrt{2R^2 \cdot 2 \cos^2 \left(\frac{\theta}{2}\right)} = 2R \cos \left(\frac{\theta}{2}\right). \]

Thus, the answer is:

\[ |A + B| = 2R \cos \left(\frac{\theta}{2}\right). \]
Was this answer helpful?
0
0

Questions Asked in JEE Main exam

View More Questions