If the system of equations: $$ \begin{aligned} 3x + y + \beta z &= 3 \\2x + \alpha y + z &= 2 \\x + 2y + z &= 4 \end{aligned} $$ has infinitely many solutions, then the value of \( 22\beta - 9\alpha \) is:

We are given a system of three linear equations and told that it has infinitely many solutions. We need to find the value of the expression \( 22\beta - 9\alpha \).
The system of equations is:
\[ 3x + y + \beta z = 3 \] \[ 2x + \alpha y - z = -3 \] \[ x + 2y + z = 4 \]For a system of linear equations \( AX = B \), the condition for having infinitely many solutions is that the determinant of the coefficient matrix \( A \), denoted as \( \Delta \), must be zero, and the determinants of the matrices formed by replacing each column with the constant vector \( B \), denoted as \( \Delta_x, \Delta_y, \Delta_z \), must also be zero.
\[ \Delta = 0, \quad \Delta_x = 0, \quad \Delta_y = 0, \quad \Delta_z = 0 \]Step 1: Set the determinant of the coefficient matrix (\( \Delta \)) to zero.
The coefficient matrix \( A \) is:
\[ A = \begin{pmatrix} 3 & 1 & \beta \\ 2 & \alpha & -1 \\ 1 & 2 & 1 \end{pmatrix} \]The determinant \( \Delta \) is:
\[ \Delta = \begin{vmatrix} 3 & 1 & \beta \\ 2 & \alpha & -1 \\ 1 & 2 & 1 \end{vmatrix} = 0 \]Expanding along the first row:
\[ 3(\alpha \cdot 1 - (-1) \cdot 2) - 1(2 \cdot 1 - (-1) \cdot 1) + \beta(2 \cdot 2 - \alpha \cdot 1) = 0 \] \[ 3(\alpha + 2) - 1(2 + 1) + \beta(4 - \alpha) = 0 \] \[ 3\alpha + 6 - 3 + 4\beta - \alpha\beta = 0 \] \[ 3\alpha + 4\beta - \alpha\beta + 3 = 0 \quad \cdots(1) \]Step 2: Set the determinant \( \Delta_y \) to zero.
To find \( \Delta_y \), we replace the second column of \( A \) with the constant vector \( B = \begin{pmatrix} 3 \\ -3 \\ 4 \end{pmatrix} \):
\[ \Delta_y = \begin{vmatrix} 3 & 3 & \beta \\ 2 & -3 & -1 \\ 1 & 4 & 1 \end{vmatrix} = 0 \]Expanding along the first row:
\[ 3(-3 \cdot 1 - (-1) \cdot 4) - 3(2 \cdot 1 - (-1) \cdot 1) + \beta(2 \cdot 4 - (-3) \cdot 1) = 0 \] \[ 3(-3 + 4) - 3(2 + 1) + \beta(8 + 3) = 0 \] \[ 3(1) - 3(3) + 11\beta = 0 \] \[ 3 - 9 + 11\beta = 0 \] \[ -6 + 11\beta = 0 \implies \beta = \frac{6}{11} \]Step 3: Substitute the value of \( \beta \) into equation (1) to find \( \alpha \).
Using \( \beta = \frac{6}{11} \) in the equation \( 3\alpha + 4\beta - \alpha\beta + 3 = 0 \):
\[ 3\alpha + 4\left(\frac{6}{11}\right) - \alpha\left(\frac{6}{11}\right) + 3 = 0 \] \[ 3\alpha + \frac{24}{11} - \frac{6\alpha}{11} + 3 = 0 \]To eliminate the fraction, multiply the entire equation by 11:
\[ 33\alpha + 24 - 6\alpha + 33 = 0 \] \[ 27\alpha + 57 = 0 \] \[ 27\alpha = -57 \] \[ \alpha = -\frac{57}{27} = -\frac{19}{9} \]We have found the values \( \alpha = -\frac{19}{9} \) and \( \beta = \frac{6}{11} \). Now we compute the value of \( 22\beta - 9\alpha \):
\[ 22\beta - 9\alpha = 22\left(\frac{6}{11}\right) - 9\left(-\frac{19}{9}\right) \] \[ = 2 \cdot 6 - (-19) \] \[ = 12 + 19 \] \[ = 31 \]Thus, the value of \( 22\beta - 9\alpha \) is 31.

For infinitely many solutions, the rank of the coefficient matrix and the augmented matrix must be equal and less than the number of variables. Using determinant conditions: 
\[ \Delta = \begin{vmatrix} 3 & 1 & \beta 2 & \alpha & 1 \\ 1 & 2 & 1 \end{vmatrix} = 0 \quad \text{and} \quad \Delta_3 = \begin{vmatrix} 3 & 1 & 3\\ 2 & \alpha & 2 \\1 & 2 & 4 \end{vmatrix} = 0 \] Solving gives \( \alpha = \frac{19}{9}, \beta = \frac{6}{11} \), so: \[ 22\beta - 9\alpha = 31 \]