Step 1: Conditions for the domain of \( f(x) \) The argument of \( \sin^{-1}(x) \), \( \frac{x-1}{2x+3} \), must satisfy two conditions:
Step 2: Solve \( \left| \frac{x-1}{2x+3} \right| \leq 1 \) Split the inequality into two cases:
1. For \( \frac{x-1}{2x+3} \geq -1 \):
\( x-1 \geq -(2x+3) \implies x-1 \geq -2x-3 \).
Simplify:
\( 3x \geq -2 \implies x \geq -\frac{2}{3} \).
2. For \( \frac{x-1}{2x+3} \leq 1 \):
\( x-1 \leq 2x+3 \implies -x \leq 4 \).
Simplify:
\( x \geq -4 \).
Thus, combining the results:
\( x \in [-4, -\frac{2}{3}] \) and exclude \( x = -\frac{3}{2} \).
Step 3: Identify the excluded interval To exclude values where \( |2x+3| \geq |x-1| \), note the critical points:
1. Solve \( |x-1| = |2x+3| \), which gives:
\( x = -4, \; x = -\frac{2}{3} \).
Using these results and the behavior of the function, the domain of \( f(x) \) is:
\( x \in (-\infty, -4] \cup \left(-\frac{2}{3}, \infty\right) \).
Step 4: Determine \( \alpha \) and \( \beta \) From the excluded interval \( \left(-\frac{3}{2}, -\frac{2}{3}\right) \):
\( \alpha = -4, \; \beta = -\frac{2}{3} \).
Step 5: Compute \( 12\alpha\beta \):
\( 12\alpha\beta = 12 \times (-4) \times \left(-\frac{2}{3}\right) \).
Simplify:
\( 12\alpha\beta = 12 \times 8/3 = 32 \).
Final Answer is Option (4): 32.
A body of mass 1000 kg is moving horizontally with a velocity of 6 m/s. If 200 kg extra mass is added, the final velocity (in m/s) is: