Given:
\[ \sin x = -\frac{3}{5}, \quad \pi < x < \frac{3\pi}{2}. \]
Step 1: Use the Pythagorean identity:
\[ \cos^2 x = 1 - \sin^2 x = 1 - \left(-\frac{3}{5}\right)^2 = 1 - \frac{9}{25} = \frac{16}{25}. \]
Step 2: Determine \( \cos x \):
Since \( \cos x < 0 \) in the third quadrant:
\[ \cos x = -\frac{4}{5}. \]
Step 3: Calculate \( \tan x \):
\[ \tan x = \frac{\sin x}{\cos x} = \frac{-\frac{3}{5}}{-\frac{4}{5}} = \frac{3}{4}. \]
Step 4: Compute \( 80(\tan^2 x - \cos x) \):
\[ \tan^2 x = \left(\frac{3}{4}\right)^2 = \frac{9}{16}, \quad 80\left(\tan^2 x - \cos x\right) = 80\left(\frac{9}{16} - \left(-\frac{4}{5}\right)\right). \]
Step 5: Simplify:
\[ 80\left(\frac{9}{16} + \frac{4}{5}\right) = 80\left(\frac{45}{80} + \frac{64}{80}\right) = 80 \cdot \frac{109}{80} = 109. \]
Final Answer:
\[ \boxed{109.} \]
A body of mass 1000 kg is moving horizontally with a velocity of 6 m/s. If 200 kg extra mass is added, the final velocity (in m/s) is: