The Paschen series corresponds to transitions to \(n = 3\). The longest wavelength corresponds to the transition between \(n = 4\) and \(n = 3\). The inverse wavelength is given by:
\(\frac{1}{\lambda} = R Z^2 \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right)\)
For \(n_1 = 3\) and \(n_2 = 4\), and taking \(Z = 1\):
\(\frac{1}{\lambda} = R \left( \frac{1}{3^2} - \frac{1}{4^2} \right) = R \left( \frac{1}{9} - \frac{1}{16} \right)\)
\(\frac{1}{\lambda} = R \left( \frac{16 - 9}{144} \right) = \frac{7R}{144}\)
Thus:
\(\alpha = 144\)
The Correct answer is: 144
A body of mass 1000 kg is moving horizontally with a velocity of 6 m/s. If 200 kg extra mass is added, the final velocity (in m/s) is: