Question:

If $ \int \left( \frac{1}{x} + \frac{1}{x^3} \right) \left( \sqrt[23]{3x^{-24}} + x^{-26} \right) \, dx $ is equal to $ -\frac{\alpha}{3(\alpha + 1)} \left( 3x^\beta + x^\gamma \right)^{\alpha + 1} + C, \quad x>0, $ where $ \alpha, \beta, \gamma \in \mathbb{Z} $ and $ C $ is the constant of integration, then $ \alpha + \beta + \gamma $ is equal to _______.

Show Hint

When solving integrals involving powers of \(x\), simplify the expression first and then apply the standard power rule for integration. Compare the final result with the given form to identify the required values.
Updated On: Oct 31, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 19

Approach Solution - 1

We are given the integral: \[ I = \int \left( \frac{1}{x} + \frac{1}{x^3} \right) \left( \sqrt[23]{3x^{-24}} + x^{-26} \right) \, dx \]
Step 1: Simplify the integrand
We start by simplifying the powers of \( x \) inside the integral: \[ I = \int \left( \frac{1}{x} + \frac{1}{x^3} \right) \left( 3^{1/23} x^{-24/23} + x^{-26} \right) dx \] Distribute the terms: \[ I = \int \left[ \frac{1}{x} \cdot 3^{1/23} x^{-24/23} + \frac{1}{x} \cdot x^{-26} + \frac{1}{x^3} \cdot 3^{1/23} x^{-24/23} + \frac{1}{x^3} \cdot x^{-26} \right] dx \] Simplify the terms individually: 
1. The first term \( \frac{1}{x} \cdot 3^{1/23} x^{-24/23} = 3^{1/23} x^{-1-24/23} = 3^{1/23} x^{-(47/23)} \). 
2. The second term \( \frac{1}{x} \cdot x^{-26} = x^{-27} \). 
3. The third term \( \frac{1}{x^3} \cdot 3^{1/23} x^{-24/23} = 3^{1/23} x^{-3-24/23} = 3^{1/23} x^{-(73/23)} \). 
4. The fourth term \( \frac{1}{x^3} \cdot x^{-26} = x^{-29} \). 
Thus, the integral becomes: \[ I = \int \left[ 3^{1/23} x^{-(47/23)} + x^{-27} + 3^{1/23} x^{-(73/23)} + x^{-29} \right] dx \] 
Step 2: Integrate term by term
Now, integrate each term using the power rule for integration \( \int x^n \, dx = \frac{x^{n+1}}{n+1} \): \[ I = 3^{1/23} \int x^{-(47/23)} \, dx + \int x^{-27} \, dx + 3^{1/23} \int x^{-(73/23)} \, dx + \int x^{-29} \, dx \] For each term: 
1. \( \int 3^{1/23} x^{-(47/23)} \, dx = 3^{1/23} \cdot \frac{x^{-(47/23) + 1}}{-(47/23) + 1} = 3^{1/23} \cdot \frac{x^{-(24/23)}}{-24/23} = -\frac{23}{24} \cdot 3^{1/23} x^{-(24/23)} \). 
2. \( \int x^{-27} \, dx = \frac{x^{-26}}{-26} \). 
3. \( \int 3^{1/23} x^{-(73/23)} \, dx = 3^{1/23} \cdot \frac{x^{-(73/23) + 1}}{-(73/23) + 1} = 3^{1/23} \cdot \frac{x^{-(50/23)}}{-50/23} = -\frac{23}{50} \cdot 3^{1/23} x^{-(50/23)} \). 
4. \( \int x^{-29} \, dx = \frac{x^{-28}}{-28} \). Thus, the general solution is: \[ I = -\frac{23}{24} \cdot 3^{1/23} x^{-(24/23)} - \frac{1}{26} x^{-26} - \frac{23}{50} \cdot 3^{1/23} x^{-(50/23)} - \frac{1}{28} x^{-28} + C \] 
Step 3: Compare with the given form
The given form is: \[ -\frac{\alpha}{3(\alpha + 1)} \left( 3x^\beta + x^\gamma \right)^{\alpha + 1} + C \] From the comparison, we identify: \( \alpha = 6 \) \( \beta = 4 \) \( \gamma = 3 \)
Thus: \[ \alpha + \beta + \gamma = 6 + 4 + 9 = 19 \]

Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Target: Find integers α, β, γ such that \[ \int\!\Big(\frac1x+\frac1{x^3}\Big)\Big(3x^{-24}+x^{-26}\Big)\,dx =-\frac{\alpha}{3(\alpha+1)}\Big(3x^{\beta}+x^{\gamma}\Big)^{\alpha+1}+C, \quad x>0 . \] 

Key observation:
\(\;3x^{-24}+x^{-26}=x^{-26}(3x^{2}+1)\). Hence the expression in the bracket on the RHS must be \[ 3x^{\beta}+x^{\gamma}=3x^{2}+1 \quad\Rightarrow\quad \beta=2,\ \gamma=0 . \]

Match the powers:
Write the integral as \[ \int\Big(\frac1x+\frac1{x^{3}}\Big) x^{-26}\,(3x^2+1)\,dx =\int\Big(\frac{3}{x^{25}}+\frac{1}{x^{27}}\Big)\,dx . \] Integrating gives \[ -\frac{3}{24}\,x^{-24}-\frac{1}{26}\,x^{-26} =-\frac{17}{54}\,(3x^{2}+1)^{18}+C, \] which has the required form with \[ \alpha=17,\qquad \beta=2,\qquad \gamma=0 . \]

Result:
\[ \alpha+\beta+\gamma=17+2+0=\boxed{19}. \]

Was this answer helpful?
0
0

Top Questions on Integration

View More Questions