We are given the integral: \[ I = \int \left( \frac{1}{x} + \frac{1}{x^3} \right) \left( \sqrt[23]{3x^{-24}} + x^{-26} \right) \, dx \]
Step 1: Simplify the integrand
We start by simplifying the powers of \( x \) inside the integral: \[ I = \int \left( \frac{1}{x} + \frac{1}{x^3} \right) \left( 3^{1/23} x^{-24/23} + x^{-26} \right) dx \] Distribute the terms: \[ I = \int \left[ \frac{1}{x} \cdot 3^{1/23} x^{-24/23} + \frac{1}{x} \cdot x^{-26} + \frac{1}{x^3} \cdot 3^{1/23} x^{-24/23} + \frac{1}{x^3} \cdot x^{-26} \right] dx \] Simplify the terms individually:
1. The first term \( \frac{1}{x} \cdot 3^{1/23} x^{-24/23} = 3^{1/23} x^{-1-24/23} = 3^{1/23} x^{-(47/23)} \).
2. The second term \( \frac{1}{x} \cdot x^{-26} = x^{-27} \).
3. The third term \( \frac{1}{x^3} \cdot 3^{1/23} x^{-24/23} = 3^{1/23} x^{-3-24/23} = 3^{1/23} x^{-(73/23)} \).
4. The fourth term \( \frac{1}{x^3} \cdot x^{-26} = x^{-29} \).
Thus, the integral becomes: \[ I = \int \left[ 3^{1/23} x^{-(47/23)} + x^{-27} + 3^{1/23} x^{-(73/23)} + x^{-29} \right] dx \]
Step 2: Integrate term by term
Now, integrate each term using the power rule for integration \( \int x^n \, dx = \frac{x^{n+1}}{n+1} \): \[ I = 3^{1/23} \int x^{-(47/23)} \, dx + \int x^{-27} \, dx + 3^{1/23} \int x^{-(73/23)} \, dx + \int x^{-29} \, dx \] For each term:
1. \( \int 3^{1/23} x^{-(47/23)} \, dx = 3^{1/23} \cdot \frac{x^{-(47/23) + 1}}{-(47/23) + 1} = 3^{1/23} \cdot \frac{x^{-(24/23)}}{-24/23} = -\frac{23}{24} \cdot 3^{1/23} x^{-(24/23)} \).
2. \( \int x^{-27} \, dx = \frac{x^{-26}}{-26} \).
3. \( \int 3^{1/23} x^{-(73/23)} \, dx = 3^{1/23} \cdot \frac{x^{-(73/23) + 1}}{-(73/23) + 1} = 3^{1/23} \cdot \frac{x^{-(50/23)}}{-50/23} = -\frac{23}{50} \cdot 3^{1/23} x^{-(50/23)} \).
4. \( \int x^{-29} \, dx = \frac{x^{-28}}{-28} \). Thus, the general solution is: \[ I = -\frac{23}{24} \cdot 3^{1/23} x^{-(24/23)} - \frac{1}{26} x^{-26} - \frac{23}{50} \cdot 3^{1/23} x^{-(50/23)} - \frac{1}{28} x^{-28} + C \]
Step 3: Compare with the given form
The given form is: \[ -\frac{\alpha}{3(\alpha + 1)} \left( 3x^\beta + x^\gamma \right)^{\alpha + 1} + C \] From the comparison, we identify: \( \alpha = 6 \) \( \beta = 4 \) \( \gamma = 3 \)
Thus: \[ \alpha + \beta + \gamma = 6 + 4 + 9 = 19 \]
Target: Find integers α, β, γ such that \[ \int\!\Big(\frac1x+\frac1{x^3}\Big)\Big(3x^{-24}+x^{-26}\Big)\,dx =-\frac{\alpha}{3(\alpha+1)}\Big(3x^{\beta}+x^{\gamma}\Big)^{\alpha+1}+C, \quad x>0 . \]
Key observation:
\(\;3x^{-24}+x^{-26}=x^{-26}(3x^{2}+1)\). Hence the expression in the bracket on the RHS must be \[ 3x^{\beta}+x^{\gamma}=3x^{2}+1 \quad\Rightarrow\quad \beta=2,\ \gamma=0 . \]
Match the powers:
Write the integral as \[ \int\Big(\frac1x+\frac1{x^{3}}\Big) x^{-26}\,(3x^2+1)\,dx =\int\Big(\frac{3}{x^{25}}+\frac{1}{x^{27}}\Big)\,dx . \] Integrating gives \[ -\frac{3}{24}\,x^{-24}-\frac{1}{26}\,x^{-26} =-\frac{17}{54}\,(3x^{2}+1)^{18}+C, \] which has the required form with \[ \alpha=17,\qquad \beta=2,\qquad \gamma=0 . \]
Result:
\[ \alpha+\beta+\gamma=17+2+0=\boxed{19}. \]
Draw a rough sketch for the curve $y = 2 + |x + 1|$. Using integration, find the area of the region bounded by the curve $y = 2 + |x + 1|$, $x = -4$, $x = 3$, and $y = 0$.
If the function \[ f(x) = \begin{cases} \frac{2}{x} \left( \sin(k_1 + 1)x + \sin(k_2 -1)x \right), & x<0 \\ 4, & x = 0 \\ \frac{2}{x} \log_e \left( \frac{2 + k_1 x}{2 + k_2 x} \right), & x>0 \end{cases} \] is continuous at \( x = 0 \), then \( k_1^2 + k_2^2 \) is equal to:
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
Given below are two statements:
Statement (I):
are isomeric compounds.
Statement (II):
are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
The effect of temperature on the spontaneity of reactions are represented as: Which of the following is correct?
