Question:

If $ {{C}_{0}},{{C}_{1}},{{C}_{2}},.....{{C}_{n}} $ denotes the binomial coefficients in the expansion of $ {{(1+x)}^{n}}, $ then $ {{C}_{0}}+\frac{{{C}_{1}}}{2}+\frac{{{C}_{2}}}{3}+....+\frac{{{C}_{n}}}{n+1} $ is equal to

Updated On: Jun 23, 2024
  • $ \frac{{{2}^{n+1}}-1}{n+1} $
  • $ \frac{{{2}^{n}}-1}{n} $
  • $ \frac{{{2}^{n-1}}-1}{n-1} $
  • $ \frac{{{2}^{n+1}}-1}{n+2} $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

We know, $ {{(1+x)}^{n}}={{C}_{0}}+{{C}_{1}}x+{{C}_{2}}{{x}^{2}}+....+{{C}_{n}}{{x}^{n}} $
On integrating both sides 0 to 1, we get
$ \left[ \frac{{{(1+x)}^{n+1}}}{n+1} \right]_{0}^{1} $
$ =\left[ {{C}_{0}}x+\frac{{{C}_{1}}{{x}^{2}}}{2}+\frac{{{C}_{2}}{{x}^{3}}}{3}+....+\frac{{{C}_{n}}{{x}^{n+1}}}{n+1} \right]_{0}^{1} $
$ \Rightarrow $ $ \frac{{{2}^{n+1}}-1}{n+1}={{C}_{0}}+\frac{{{C}_{1}}}{2}+\frac{{{C}_{2}}}{3}+.....+\frac{{{C}_{n}}}{n+1} $
Was this answer helpful?
0
0

Concepts Used:

Binomial Expansion Formula

The binomial expansion formula involves binomial coefficients which are of the form 

(n/k)(or) nCk and it is calculated using the formula, nCk =n! / [(n - k)! k!]. The binomial expansion formula is also known as the binomial theorem. Here are the binomial expansion formulas.

This binomial expansion formula gives the expansion of (x + y)n where 'n' is a natural number. The expansion of (x + y)n has (n + 1) terms. This formula says:

We have (x + y)n = nC0 xn + nC1 xn-1 . y + nC2 xn-2 . y2 + … + nCn yn

General Term = Tr+1 = nCr xn-r . yr

  • General Term in (1 + x)n is nCr xr
  • In the binomial expansion of (x + y)n , the rth term from end is (n – r + 2)th .