Given: The given expression for \(\alpha\) is:
\[ \alpha = \lim_{x \to 0^+} \frac{\sqrt{x} \left( e^{\sqrt{\tan x} - \sqrt{x}} - 1 \right)}{\sqrt{\tan x} - \sqrt{x}}. \]
As \( x \to 0^+ \), we observe that \( \sqrt{\tan x} \to \sqrt{x} \). The expression simplifies as the numerator and denominator converge to zero:
\[ \alpha = 1. \]
The given expression for \(\beta\) is:
\[ \beta = \lim_{x \to 0} \left( 1 + \sin x \right)^{\frac{1}{2} \cot x}. \]
Using the approximation \( \sin x \approx x \) and \( \cot x \approx \frac{1}{x} \) as \( x \to 0 \), we rewrite the expression:
\[ \beta = \left( 1 + x \right)^{\frac{1}{2x}}. \]
Using the standard limit \( \lim_{x \to 0} \left( 1 + x \right)^{\frac{1}{x}} = e \), we get:
\[ \beta = e^{\frac{1}{2}}. \]
The quadratic equation is:
\[ x^2 - \left( 1 + \sqrt{e} \right) x + \sqrt{e} = 0. \]
Compare with the general quadratic form:
\[ ax^2 + bx + c = 0. \]
From the given equation:
\[ a = 1, \quad b = -(1 + \sqrt{e}), \quad c = \sqrt{e}. \]
Substitute the values of \( a \) and \( b \):
\[ a + b = 1 - (1 + \sqrt{e}) = -\sqrt{e}. \]
\[ \ln(a + b) = \ln(-\sqrt{e}) = \ln(\sqrt{e}) + \ln(-1) = \frac{1}{2} \ln(e). \]
Finally, calculate:
\[ 12 \ln(a + b) = 12 \times \frac{1}{2} = 6. \]
Answer: 6
A body of mass 1000 kg is moving horizontally with a velocity of 6 m/s. If 200 kg extra mass is added, the final velocity (in m/s) is: