If \[ A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}, \] find \( A^{-1} \).
Using \( A^{-1} \), solve the following system of equations:
\[ \begin{aligned} 2x - 3y + 5z &= 11 \quad \text{(1)} \\ 3x + 2y - 4z &= -5 \quad \text{(2)} \\ x + y - 2z &= -3 \quad \text{(3)} \end{aligned} \]
Let: \[ A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad B = \begin{bmatrix} 11 \\ -5 \\ -3 \end{bmatrix} \]
Then the system becomes:
\[ AX = B \]
We use:
\[ A^{-1} = \frac{1}{|A|} \cdot \text{adj}(A) \]
\[ |A| = \begin{vmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{vmatrix} = 2 \begin{vmatrix} 2 & -4 \\ 1 & -2 \end{vmatrix} + 3 \begin{vmatrix} 3 & -4 \\ 1 & -2 \end{vmatrix} + 5 \begin{vmatrix} 3 & 2 \\ 1 & 1 \end{vmatrix} \] \[ = 2(2 \cdot -2 - (-4) \cdot 1) + 3(3 \cdot -2 - (-4) \cdot 1) + 5(3 \cdot 1 - 2 \cdot 1) = 2(-4 + 4) + 3(-6 + 4) + 5(3 - 2) = 0 - 6 + 5 = -1 \] \[ \Rightarrow |A| = -1 \]
\[ \text{adj}(A) = \begin{bmatrix} 0 & 1 & 1 \\ 2 & -1 & -1 \\ 1 & 1 & 5 \end{bmatrix} \]
\[ A^{-1} = \frac{1}{-1} \cdot \text{adj}(A) = -1 \cdot \begin{bmatrix} 0 & 1 & 1 \\ 2 & -1 & -1 \\ 1 & 1 & 5 \end{bmatrix} = \begin{bmatrix} 0 & -1 & -1 \\ -2 & 1 & 1 \\ -1 & -1 & -5 \end{bmatrix} \]
\[ X = \begin{bmatrix} 0 & -1 & -1 \\ -2 & 1 & 1 \\ -1 & -1 & -5 \end{bmatrix} \cdot \begin{bmatrix} 11 \\ -5 \\ -3 \end{bmatrix} \]
\[ \boxed{ x = 8,\quad y = -30,\quad z = 9 } \]
If \( A \), \( B \), and \( \left( \text{adj}(A^{-1}) + \text{adj}(B^{-1}) \right) \) are non-singular matrices of the same order, then the inverse of \[ A \left( \text{adj}(A^{-1}) + \text{adj}(B^{-1}) \right) B \] is equal to:
If the system of equations \[ (\lambda - 1)x + (\lambda - 4)y + \lambda z = 5 \] \[ \lambda x + (\lambda - 1)y + (\lambda - 4)z = 7 \] \[ (\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9 \] has infinitely many solutions, then \( \lambda^2 + \lambda \) is equal to:
For the curve \( \sqrt{x} + \sqrt{y} = 1 \), find the value of \( \frac{dy}{dx} \) at the point \( \left(\frac{1}{9}, \frac{1}{9}\right) \).
Find the Derivative \( \frac{dy}{dx} \)
Given:\[ y = \cos(x^2) + \cos(2x) + \cos^2(x^2) + \cos(x^x) \]