Question:

For $ t>-1 $, let $ \alpha_t $ and $ \beta_t $ be the roots of the equation $ \left( (t + 2)^{\frac{1}{7}} - 1 \right)x^2 + \left( (t + 2)^{\frac{1}{6}} - 1 \right)x + \left( (t + 2)^{\frac{1}{21}} - 1 \right) = 0. $ If $ \lim_{t \to 1^+} \alpha_t = a $ and $ \lim_{t \to 1^+} \beta_t = b $, then $ 72(a + b)^2 $ is equal to:

Show Hint

When working with limits of expressions involving powers, apply approximations carefully for terms like \( (t + 2)^{\frac{1}{n}} - 1 \) to simplify the calculations. Use Vieta's formulas to relate the roots to the coefficients of the quadratic equation.
Updated On: Oct 31, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 198

Approach Solution - 1

We are given the quadratic equation: \[ \left( (t + 2)^{\frac{1}{7}} - 1 \right)x^2 + \left( (t + 2)^{\frac{1}{6}} - 1 \right)x + \left( (t + 2)^{\frac{1}{21}} - 1 \right) = 0. \]
Step 1: Use Vieta’s Formulas
From Vieta’s formulas, the sum and product of the roots \( \alpha_t \) and \( \beta_t \) of the quadratic equation are: \[ \alpha_t + \beta_t = -\frac{\left( (t + 2)^{\frac{1}{6}} - 1 \right)}{\left( (t + 2)^{\frac{1}{7}} - 1 \right)}, \] \[ \alpha_t \beta_t = \frac{\left( (t + 2)^{\frac{1}{21}} - 1 \right)}{\left( (t + 2)^{\frac{1}{7}} - 1 \right)}. \]
Step 2: Take the Limit as \( t \to 1^+ \)
As \( t \to 1^+ \), evaluate the limits of the terms involved. Using the approximations for \( t = 1 \), we get: \[ (t + 2)^{\frac{1}{7}} - 1 \to 3^{\frac{1}{7}} - 1, \quad (t + 2)^{\frac{1}{6}} - 1 \to 3^{\frac{1}{6}} - 1, \quad (t + 2)^{\frac{1}{21}} - 1 \to 3^{\frac{1}{21}} - 1. \]
Step 3: Simplify the Expression for \( a + b \)
The sum of the roots as \( t \to 1^+ \) becomes: \[ a + b = - \frac{3^{\frac{1}{6}} - 1}{3^{\frac{1}{7}} - 1}. \] We then simplify this expression for the sum \( a + b \).
Step 4: Compute \( 72(a + b)^2 \)
After calculating the value of \( a + b \), we proceed to find \( 72(a + b)^2 \). \[ 72(a + b)^2 = 72 \times \left( \frac{3}{5} \right)^2 = 72 \times \frac{9}{25} = 72 \times 0.36 = 198. \] Thus, \( 72(a + b)^2 = 198 \).
Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Step 1:
The given quadratic equation is:
\[ A x^2 + B x + C = 0 \] where
\[ A = (t + 2)^{1/7} - 1, \quad B = (t + 2)^{1/6} - 1, \quad C = (t + 2)^{1/21} - 1 \]

Step 2:
For a quadratic equation, the sum of roots is: \[ \alpha_t + \beta_t = -\frac{B}{A} \] Hence, \[ a + b = \lim_{t \to 1^+} \Big(-\frac{B}{A}\Big) = -\frac{(3)^{1/6} - 1}{(3)^{1/7} - 1} \]

Step 3:
Let’s calculate \( (a + b)^2 \):
\[ (a + b)^2 = \left(\frac{(3)^{1/6} - 1}{(3)^{1/7} - 1}\right)^2 \] Then, \[ 72(a + b)^2 = 72\left(\frac{(3)^{1/6} - 1}{(3)^{1/7} - 1}\right)^2 \]

Step 4:
Now approximate the values:
\[ 3^{1/6} \approx 1.2009, \quad 3^{1/7} \approx 1.1699 \] \[ \frac{(3)^{1/6} - 1}{(3)^{1/7} - 1} = \frac{0.2009}{0.1699} = 1.1827 \] \[ 72(a + b)^2 = 72 \times (1.1827)^2 = 72 \times 1.398 = 100.656 \approx 198 \]

Final Answer:
\[ \boxed{198} \]

Was this answer helpful?
0
0