Find the residue of \( (67 + 89 + 90 + 87) \pmod{11} \):
This problem involves modular arithmetic. The residue of a sum modulo \(n\) is the same as the sum of the individual residues modulo \(n\). This property allows us to simplify the calculation by working with smaller numbers.
The key property is \[ (a + b + c + d) \pmod{n} = \left( (a \pmod{n}) + (b \pmod{n}) + (c \pmod{n}) + (d \pmod{n}) \right) \pmod{n}. \] We will find the residue of each number in the sum modulo 11.
Now, add the residues: \[ 1 + 1 + 2 + 10 = 14. \] Finally, find the residue of this sum modulo 11: \[ 14 \pmod{11}: \quad 14 = 1 \times 11 + 3. \quad \text{So,} \quad 14 \equiv 3 \pmod{11}. \]
The residue is \( \boxed{3} \).