
Step 1: Time-shifting property of Fourier Transform: 
Let \(f(t) = e^{-t}u(t)\), whose Fourier transform is: \[ F(\omega) = \dfrac{1}{1 + j\omega} \] Now for \(x(t) = f(t - 2) = e^{-(t - 2)}u(t - 2)\), the Fourier transform is: \[ X(\omega) = e^{-j\omega \cdot 2} \cdot \dfrac{1}{1 + j\omega} = \dfrac{e^{-2j\omega}}{1 + j\omega} \]
Match the LIST-I with LIST-II
| LIST-I (Configuration of Bipolar Transistors) | LIST-II (Characteristics) | ||
|---|---|---|---|
| A. | Common Base | I. | Current Gain but no Voltage Gain | 
| B. | Common Emitter | III. | Both Current and Voltage Gain | 
| C. | Common Collector | II. | Voltage Gain but no Current Gain | 
Choose the correct answer from the options given below: