(i) Radius of the cone, r = 7cm
Slant height of the cone, l = 25cm
Height of the cone, \(h = \sqrt{l² - r²}\)
\(= \sqrt{(25)² - (7)²}\)
\(= \sqrt{625 - 49}\)
\(= \sqrt{576}\)
h = 24 cm
Volume of cone =\( \frac{1}{3}\) \(\pi \)r²h
= \(\frac{1}{3}\) × \(\frac{22}{7}\) × 7 cm × 7 cm × 24 cm
= 1232 cm³
= 1232 × (\(\frac{1}{1000}\)L)
= 1.232 liters
(ii) Height of the cone, h = 7cm
Slant height of the cone, l = 13cm
Radius of the cone, \(r = \sqrt{l² - h²}\)
\(= \sqrt{(13)² - (12)²}\)
\(= \sqrt{169 -144}\)
\(= \sqrt{25}\)
r = 5 cm
Volume of the cone = \(\frac{1}{3}\)\(\pi\)r²h
= \(\frac{1}{3}\) × \(\frac{22}{7}\) × 5 cm × 5 cm × 12 cm
\(= \frac{2200}{7}\) cm³
\(= \frac{2200}{7} × \frac{1}{1000}\ L \)
\(=\frac{ 11}{35}\) litres
Factorise each of the following:
(i) 8a 3 + b 3 + 12a 2b + 6ab2
(ii) 8a 3 – b 3 – 12a 2b + 6ab2
(iii) 27 – 125a 3 – 135a + 225a 2
(iv) 64a 3 – 27b 3 – 144a 2b + 108ab2
(v) 27p 3 – \(\frac{1}{ 216}\) – \(\frac{9 }{ 2}\) p2 + \(\frac{1 }{4}\) p
Find the value of the polynomial 5x – 4x 2 + 3 at
(i) x = 0 (ii) x = –1 (iii) x = 2