Question:

fA+B+C=, then tan(A2)tan(B2)+tan(B2)tan(C2)+tan(C2)tan(A2) is equal to

Updated On: Feb 15, 2024
  • (A) π/6
  • (B) 3
  • (C) 2
  • (D) 1
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Explanation:
Given that, A+B+C=πtanA2tanB2+tanB2tanC2+tanC2tanA2tanB2(tanA2+tanC2)+tanC2tanA2tanB2(sinA2cosC2+sinC2cosA2cosA2cosC2)+sinC2sinA2cosC2cosA2cosA2cosC2C2sinA2tan(B2){sin(A+C2)}+sinC22sin(B/2)+sin(C/2)sin(A/2)cos(A/2)cos(C/2)cos(A+C)/2+sin(C/2)sin(A/2)cos(A/2)cos(C/2)cos(A/2)cos(C/2)sin(A/2)sin(C/2)+sin(C/2)sin(A/2)cos(A/2)cos(C/2)=cos(A/2)cos(C/2)cos(A/2)cos(C/2)=1

Was this answer helpful?
0
0