The speed of electromagnetic waves in a medium is related to its relative permeability (\( \mu_r \)) and relative permittivity (\( \varepsilon_r \)) by the equation:
\[ \varepsilon_r \mu_r = \frac{c^2}{v^2}, \]
where:
- \( c = 3 \times 10^8 \, \text{ms}^{-1} \) (speed of light in vacuum),
- \( v = 1.5 \times 10^8 \, \text{ms}^{-1} \) (speed of light in the medium),
- \( \mu_r = 2.0 \) (relative permeability of the medium).
Substituting the given values:
\[ \varepsilon_r \times 2 = \frac{(3 \times 10^8)^2}{(1.5 \times 10^8)^2}. \]
Simplify:
\[ \varepsilon_r \times 2 = \frac{9 \times 10^{16}}{2.25 \times 10^{16}}. \]
\[ \varepsilon_r \times 2 = 4. \]
\[ \varepsilon_r = 2. \]
Final Answer: \( \varepsilon_r = 2 \) (Option 4)
List-I EM-Wave | List-II Wavelength Range |
---|---|
(A) Infra-red | (III) 1 mm to 700 nm |
(B) Ultraviolet | (II) 400 nm to 1 nm |
(C) X-rays | (IV) 1 nm to \(10^{-3}\) nm |
(D) Gamma rays | (I) \(<10^{-3}\) nm |
A body of mass 1000 kg is moving horizontally with a velocity of 6 m/s. If 200 kg extra mass is added, the final velocity (in m/s) is: