Question:

Eccentricity of ellipse $\frac{x^{2} }{a^{2}} + \frac{y^{2}}{b^{2}} = 1 $ if it passes through point $(9, 5)$ and $(12, 4)$ is

Updated On: Apr 17, 2024
  • $\sqrt{3/4} $
  • $\sqrt{4/5} $
  • $\sqrt{5/6} $
  • $\sqrt{6/7} $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

We have $\frac{81}{a^{2}} + \frac{25}{b^{2}} = 1$ ......(1)
$ \frac{144}{a^{2}} + \frac{16}{b^{2}} = 1 $ .......(2)
From e (2) - e (1) :
$\frac{63}{a^{2}} - \frac{9}{b^{2}} = 0$
$ \Rightarrow \frac{b^{2}}{a^{2}} = \frac{1}{7} $
$ e = \sqrt{1- \frac{1}{7}} = \sqrt{\frac{6}{7}} $
Was this answer helpful?
2
0

Concepts Used:

Ellipse

Ellipse Shape

An ellipse is a locus of a point that moves in such a way that its distance from a fixed point (focus) to its perpendicular distance from a fixed straight line (directrix) is constant. i.e. eccentricity(e) which is less than unity

Properties 

  • Ellipse has two focal points, also called foci.
  • The fixed distance is called a directrix.
  • The eccentricity of the ellipse lies between 0 to 1. 0≤e<1
  • The total sum of each distance from the locus of an ellipse to the two focal points is constant
  • Ellipse has one major axis and one minor axis and a center

Read More: Conic Section

Eccentricity of the Ellipse

The ratio of distances from the center of the ellipse from either focus to the semi-major axis of the ellipse is defined as the eccentricity of the ellipse.

The eccentricity of ellipse, e = c/a

Where c is the focal length and a is length of the semi-major axis.

Since c ≤ a the eccentricity is always greater than 1 in the case of an ellipse.
Also,
c2 = a2 – b2
Therefore, eccentricity becomes:
e = √(a2 – b2)/a
e = √[(a2 – b2)/a2] e = √[1-(b2/a2)]

Area of an ellipse

The area of an ellipse = πab, where a is the semi major axis and b is the semi minor axis.

Position of point related to Ellipse

Let the point p(x1, y1) and ellipse

(x2 / a2) + (y2 / b2) = 1

If [(x12 / a2)+ (y12 / b2) − 1)]

= 0 {on the curve}

<0{inside the curve}

>0 {outside the curve}