At the surface:
\[mg = 300 \, \text{N}\]
\[m = \frac{300}{g_s}\]
At depth \( \frac{R}{4} \):
\[g_d = g_s \left( 1 - \frac{d}{R} \right)\]
where \( d = \frac{R}{4} \).
\[g_d = g_s \left( 1 - \frac{R}{4R} \right) = g_s \cdot \frac{3}{4}\]
The weight at depth \( \frac{R}{4} \) is:
\[\text{Weight} = m \times g_d = m \times \frac{3 g_s}{4}\]
\[= \frac{3}{4} \times 300 = 225 \, \text{N}\]
A body of mass 1000 kg is moving horizontally with a velocity of 6 m/s. If 200 kg extra mass is added, the final velocity (in m/s) is: