Step 1: Finding Resistance (\(R\))
We use the formula for resistance when the rated voltage (\(V\)) and rated power (\(P\)) are given:
\(R = \frac{V^2}{P}\)
Given:
\(V = 200 \, \text{volts}, \quad P = 50 \, \text{watts}\)
Substituting the values:
\(R = \frac{200^2}{50} = \frac{40000}{50} = 800 \, \Omega\)
Thus, the resistance is:
\(R = 800 \, \Omega\)
Step 2: Finding Power (\(P\)) for a Different Voltage
To calculate the power consumed for an applied voltage (\(V_{\text{applied}}\)) of 100 volts, we use the formula:
\(P = \frac{V_{\text{applied}}^2}{R}\)
Given:
\(V_{\text{applied}} = 100 \, \text{volts}, \quad R = 800 \, \Omega\)
Substituting the values:
\(P = \frac{100^2}{800} = \frac{10000}{800} = 12.5 \, \text{watts}\)
Thus, the power consumed is:
\(P = 12.5 \, \text{watts}\)
A body of mass 1000 kg is moving horizontally with a velocity of 6 m/s. If 200 kg extra mass is added, the final velocity (in m/s) is: