Question:

$ABCD$ is a trapezium such that $AB$ and $CD$ are parallel and $BC$ $\perp$ $CD$, if $\angle $ $ADB = \theta, BC = p$ and $CD = q$, then $AB$ is equal to

Updated On: Oct 1, 2024
  • $ \frac{ (p^2 + q^2 ) \, sin \, \theta}{ p \, cos \, \theta + q \, sin \, \theta}$
  • $ \frac{ p^2 + q^2 \, cos \, \theta}{ p \, cos \, \theta + q \, sin \, \theta}$
  • $ \frac{ p^2 + q^2}{ p^2 \, cos \, \theta + q^2 \, sin \, \theta}$
  • $ \frac{ (p^2 + q^2) \, sin \, \theta}{ (p \, cos \, \theta + q \, sin \, \theta)^2}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Let AB = x
In $\triangle DAM$, tan $ (\pi -
heta - \alpha) = \frac{p}{ x - q}$
$\Rightarrow tan (
heta + \alpha ) = \frac{p}{ q - x} $
$\Rightarrow q - x \, p \, cot (
heta + \alpha) $
$\Rightarrow x = q - p \, cot
heta + \alpha) $
= q - p $ \bigg( \frac{ cot \,
heta \, cot \, \alpha - 1}{ cot \, \alpha + cot \,
heta } \bigg) $ $ \hspace25mm$ $ \Bigg [ \because \, cot \, \alpha = \frac{q}{p} \Bigg ] $
= q - p $ \Bigg ( \frac{ \frac{q}{p} cot \,
heta - 1 }{ \frac{q}{p} + cot \,
heta }\Bigg ) = q - p \bigg( \frac{ q \, cot \,
heta - p }{ q + p cot \,
heta } \bigg)$
= q - p $ \bigg ( \frac{ q \, cos \,
heta - p sin \,
heta }{ q \, sin \,
heta + p \, cos \,
heta }\bigg) $
$\Rightarrow x = \frac{ q^2 \, sin \,
heta + pq \, cos \,
heta - pq \, cos \,
heta + p^2 \, sin \,
heta }{ p \, cos \,
heta + q \, sin \,
heta } $
$\Rightarrow AB = \frac{(p^2 + q^2) \, sin \,
heta }{ p \, cos \,
heta + q \, sin \,
heta } $
Alternate Solution
Applying sine rule in $\triangle ABD$,
$\frac{AB}{sin \,
heta } = \frac{ \sqrt{ p^2 + q^2}}{ sin \, \{ \pi - (
heta + \alpha) \}}$
$\Rightarrow \frac{ AB}{ sin \,
heta } = \frac{ \sqrt { p^2 + q^2 }}{ sin \, (
heta + \alpha)} $
$\Rightarrow AB = \frac{ \sqrt{ p^2 + q^2 }}{ sin \,
heta cos \alpha + cos
heta sin \alpha } \bigg [ \because cos \, \alpha = \frac{ q}{ \sqrt{p^2 + q^2}} \bigg ] $
= $\frac{(p^2 + q^2 ) \, sin \, ? }{ p \, cos \, ? + q \, sin \, ?} = \frac{p}{\sqrt{ p^2 + q^2 }} $
Was this answer helpful?
0
0

Questions Asked in JEE Main exam

View More Questions

Concepts Used:

Trigonometric Functions

The relationship between the sides and angles of a right-angle triangle is described by trigonometry functions, sometimes known as circular functions. These trigonometric functions derive the relationship between the angles and sides of a triangle. In trigonometry, there are three primary functions of sine (sin), cosine (cos), tangent (tan). The other three main functions can be derived from the primary functions as cotangent (cot), secant (sec), and cosecant (cosec).

Six Basic Trigonometric Functions:

  • Sine Function: The ratio between the length of the opposite side of the triangle to the length of the hypotenuse of the triangle.

sin x = a/h

  • Cosine Function: The ratio between the length of the adjacent side of the triangle to the length of the hypotenuse of the triangle.

cos x = b/h

  • Tangent Function: The ratio between the length of the opposite side of the triangle to the adjacent side length.

tan x = a/b

Tan x can also be represented as sin x/cos x

  • Secant Function: The reciprocal of the cosine function.

sec x = 1/cosx = h/b

  • Cosecant Function: The reciprocal of the sine function.

cosec x = 1/sinx = h/a

  • Cotangent Function: The reciprocal of the tangent function.

cot x = 1/tan x = b/a

Formulas of Trigonometric Functions: