let AB be the tower and AC be the canal. C is the point on the other side of the canal directly opposite the tower.
In ∆ABC,
\(\frac{AB}{ BC} = tan 60^{\degree}\)
\(\frac{AB}{ BC} = \sqrt3\)
\(BC = \frac{AB}{\sqrt3}\)
In ∆ABD,
\(\frac{AB}{ BD} = tan 30^{\degree}\)
\(\frac{AB}{BC + CD} = \frac1{\sqrt3}\)
\(\frac{AB}{\frac{ AB}{\sqrt3} + 20} = \frac{1}{\sqrt3}\)
\(\frac{ AB \sqrt3}{ AB + 20 \sqrt3} = \frac1{ \sqrt3}\)
\(3AB = AB + 20 \sqrt3\)
\(2AB = 20\sqrt3\)
\(AB = 10 \sqrt3\, m\)
\(BC = \frac{AB}{ \sqrt3} = (\frac{10 \sqrt3}{\sqrt3})m = 10\,m\)
Therefore, the height of the tower is \(10\sqrt3 \,m\) and the width of the canal is \(10\, m\).