Question:

A particle of mass m is moving such that its velocity at a point (x,y) is given by v = α (y\(\hat{i}\) + 2x\(\hat{j}\)), where α is a non-zero constant. What is the resultant force acting on the particle?

Updated On: Oct 11, 2024
  • F = mα\(^2\)(y\(\hat{i}\)+ 2x\(\hat{j}\))
  • F = mα\(^2\) (x\(\hat{i}\) + 2y\(\hat{j}\))

  • F = 2mα\(^2\)(y\(\hat{i}\)+ 2x\(\hat{j}\))
  • F = 2mα\(^2\) (x\(\hat{i}\) + y\(\hat{j}\))
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Approach Solution - 1

The correct answer is (D) F = 2mα\(^2\) (x\(\hat{i}\) + y\(\hat{j}\))

\(\vec{V}\)=\(\alpha(y\hat{i}+2x\hat{j})\)

\(\Rightarrow V_x=\frac{dx}{dt}=\alpha y\,\,and\,\,V_y=\frac{dy}{dt}=2\alpha X\)

\(\vec{a}=\frac{d\vec{v}}{dt}=\alpha\frac{dy}{dt}\hat{i}+2\alpha\frac{dx}{dt}\hat{j}=[(\alpha)(2\alpha x)\hat{i}+2\alpha(\alpha y)\hat{j}]\)

\(\vec{a}=[(2\alpha^2x)\hat{i}+(2\alpha^2y)\hat{j}]\)

\(\vec{a}=2\alpha^2[x\hat{i}+y\hat{j}]\)

\(\vec{F_{net}}\) = \(m\vec{a}=2m\alpha^2[x\hat{i}+y\hat{j}]\)
Was this answer helpful?
12
3
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

\(F=m\frac{d\vec{V}}{dt}\)

\(\vec{V}=\alpha(y\hat{x}+2x\hat{y})\)

\(\frac{d\vec{V}}{dt}=\alpha(\frac{dy}{dt}\hat{x}+2\frac{dx}{dt}\hat{y})\)

\(=\alpha[2x\alpha\hat{x}+2\alpha y\hat{y}]\)

\(=2\alpha^2[x\hat{x}+y\hat{y}]\)

\(\vec{F}\) = 2mα\(^2\) (x\(\hat{i}\) + y\(\hat{j}\))

Was this answer helpful?
3
1

Questions Asked in JEE Advanced exam

View More Questions

Concepts Used:

Laws of Motion

The laws of motion, which are the keystone of classical mechanics, are three statements that defined the relationships between the forces acting on a body and its motion. They were first disclosed by English physicist and mathematician Isaac Newton.

Newton’s First Law of Motion

Newton’s 1st law states that a body at rest or uniform motion will continue to be at rest or uniform motion until and unless a net external force acts on it.

Newton’s Second Law of Motion

Newton's 2nd law of motion deals with the relation between force and acceleration. According to the second law of motion, the acceleration of an object as built by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object.

Newton’s Third Law of Motion

Newton's 3rd law of motion states when a body applies a force on another body that there is an equal and opposite reaction for every action.