Given:
\[t_1 = \frac{u + \sqrt{u^2 + 2gh}}{g}\]
\[t_2 = \frac{-u + \sqrt{u^2 + 2gh}}{g}\]
For the time \( t \) required if the body is dropped (i.e., initial velocity \( u = 0 \)):
\[t = \sqrt{\frac{2gh}{g^2}} = \frac{\sqrt{2gh}}{g}\]
Now, using the equations for \( t_1 \) and \( t_2 \):
\[t_1 t_2 = \frac{(u^2 + 2gh) - u^2}{g^2} = \frac{2gh}{g^2} = t^2\]
Thus:
\[t = \sqrt{t_1 t_2}\]
A body of mass 1000 kg is moving horizontally with a velocity of 6 m/s. If 200 kg extra mass is added, the final velocity (in m/s) is: