For liquid $A$
$L_{1}=20 \,cm , \theta_{1}=38^{\circ}$ ; concentration $=C_{1}$
Specific rotation $ \alpha_{1}=\frac{\theta_{1}}{L_{1} C_{1}} $
$=\frac{38^{\circ}}{20 \times C_{1}}$
Similarly, for liquid $B$
$L_{2}=30 cm \theta_{2}=-24^{\circ}$, concentration $=C_{2}$
Specific rotation $\alpha_{2}=\frac{\theta_{2}}{L_{2} C_{2}}$
$=\frac{\left(-24^{\circ}\right)}{30 \times C_{2}}$
The mixture has 1 part of liquid $A$ and 2 parts of liquid $B$
$\therefore C_{1}': C_{2}'=1: 2 $
$\theta=\left[\alpha_{1} C_{1}'+\alpha_{2} C_{2}'\right] l $
$=\left\{\frac{38^{\circ}}{20 \times C_{1}} \times \frac{C_{1}}{3}+\frac{\left(-24^{\circ}\right)}{30 \times C_{2}} \times \frac{2 C_{2}}{3}\right\} \times 30 $
$=19^{\circ}-16^{\circ}=3^{\circ}$
Thus, the optical rotation of mixture is $+3^{\circ}$ in right hand direction