To solve \((\sqrt{5} + \frac{1}{\sqrt{5}})^2\), we use this formula: \((a + b)^2 = a^2 + 2ab + b^2\).
So,
\((\sqrt{5} + \frac{1}{\sqrt{5}})^2 = a^2 + 2ab + b^2 = 5 + 2 + \frac{1}{5} = 7 + \frac{1}{5}\)
\(7 + \frac{1}{5} = \frac{35}{5} + \frac{1}{5} = \frac{36}{5}\)=\(7.2\)
The correct option is (C): 7.2
List I | List II | ||
A. | \(\sqrt{\frac{0.81\times0.484}{0.064\times6.25}}\) | I. | 0.024 |
B. | \(\sqrt{\frac{0.204\times42}{0.07\times3.4}}\) | II. | 0.99 |
C. | \(\sqrt{\frac{0.081\times0.324\times4.624}{1.5625\times0.0289\times72.9\times64}}\) | III. | 50 |
D. | \(\sqrt{\frac{9.5\times0.085}{0.0017\times0.19}}\) | IV. | 6 |