Suppose $ {{A}_{1}},{{A}_{2}}.....,{{A}_{30}} $ are thirty sets each with five elements and $ {{B}_{1}},{{B}_{2}}.....,{{B}_{n}} $ are 'n' sets each with three elements.
Let $ \underset{i=1}{\mathop{\overset{30}{\mathop{\cup }}\,}}\,\,\,{{A}_{i}}=\underset{j=1}{\mathop{\overset{n}{\mathop{\cup }}\,}}\,\,\,\,{{B}_{j}}=S.
$ Assume that each element of S belongs to exactly 10 of $ {{A}_{I}}'s $ and exactly 9 of $ {{B}_{j}}'s, $ then the value of $n$ is