If curve $r = a \sin \, 3\theta$
To trace the curve, we consider the following table :
Thus there is a loop between $\theta = 0 $ & $\theta = \frac{\pi}{3}$ as r varies from $r = 0$ to $r = 0$.
Hence, the area of the loop lying in the positive quadrant $= \frac{1}{2} \int^{\frac{\pi}{3}}_{0} r^{2} d \theta $
$ = \frac{1}{2} \int ^{\frac{\pi }{3}}_{0}\sin^{2} \phi . \frac{1}{3} d\phi $
[On putting, $3\theta = \phi \Rightarrow d\theta = \frac{1}{3} d\phi$]
$ = \frac{a^{2}}{6} \int ^{\frac{\pi }{2}}_{0} \sin^{2} \phi d\phi $
$= \frac{a^{2}}{6}. \int^{\frac{\pi}{2}}_{0} \frac{1 - \cos 2\phi}{2} d\phi \left[ \because \, \, \cos 2\theta = 1 - 2 \sin^{2} \theta\right]$
$ = \frac{a^{2}}{12} . \left[\phi + \frac{\sin 2 \phi}{2}\right]^{\frac{\pi}{2}}_{0}$
$ = \frac{a^{2}}{12}. \left[ \frac{\pi}{2} + \sin \pi\right] = \frac{a^{2} \pi}{24}$