If A is a square matrix of order 3, then |Adj(Adj A2)| =
Match the following List -I (Complex) List II (Spin only Magnetic Moment)
List -I (Complex) | List II (Spin only Magnetic Moment) | ||
A) | [CoF6]3- | I) | 0 |
B) | [Co(C2O4)3]3- | II) | √24 |
C) | [FeF6]3+ | III) | √8 |
D) | [Mn(CN)6]3- | IV) | √35 |
V) | √15 |
the correct answer is:
If (h,k) is the image of the point (3,4) with respect to the line 2x - 3y -5 = 0 and (l,m) is the foot of the perpendicular from (h,k) on the line 3x + 2y + 12 = 0, then lh + mk + 1 = 2x - 3y - 5 = 0.
If a line ax + 2y = k forms a triangle of area 3 sq.units with the coordinate axis and is perpendicular to the line 2x - 3y + 7 = 0, then the product of all the possible values of k is
An ellipse is a locus of a point that moves in such a way that its distance from a fixed point (focus) to its perpendicular distance from a fixed straight line (directrix) is constant. i.e. eccentricity(e) which is less than unity
Read More: Conic Section
The ratio of distances from the center of the ellipse from either focus to the semi-major axis of the ellipse is defined as the eccentricity of the ellipse.
The eccentricity of ellipse, e = c/a
Where c is the focal length and a is length of the semi-major axis.
Since c ≤ a the eccentricity is always greater than 1 in the case of an ellipse.
Also,
c2 = a2 – b2
Therefore, eccentricity becomes:
e = √(a2 – b2)/a
e = √[(a2 – b2)/a2] e = √[1-(b2/a2)]
The area of an ellipse = πab, where a is the semi major axis and b is the semi minor axis.
Let the point p(x1, y1) and ellipse
(x2 / a2) + (y2 / b2) = 1
If [(x12 / a2)+ (y12 / b2) − 1)]
= 0 {on the curve}
<0{inside the curve}
>0 {outside the curve}