Let P1 be a parabola with vertex (3, 2) and focus (4, 4) and P2 be its mirror image with respect to the line x + 2y = 6. Then the directrix of P2 is x + 2y = _______.
The correct answer is 10
Focus = (4, 4) and vertex = (3, 2)
∴ Point of intersection of directrix with axis of parabola = A = (2, 0)
Image of A(2, 0) with respect to line
x + 2y = 6 is B(x2, y2)
\(∴\frac{x^2−2}{1}=\frac{y^2−0}{2}=\frac{−2(2+0−6)}{5}\)
\(∴B(x_2,y_2)=(185,165).\)
Point B is point of intersection of direction with axes of parabola P2.
∴ x + 2y = λ must have point
\((\frac{18}{5},\frac{16}{5})\)
∴ x + 2y = 10
A body of mass 1000 kg is moving horizontally with a velocity of 6 m/s. If 200 kg extra mass is added, the final velocity (in m/s) is:
Parabola is defined as the locus of points equidistant from a fixed point (called focus) and a fixed-line (called directrix).
=> MP2 = PS2
=> MP2 = PS2
So, (b + y)2 = (y - b)2 + x2