Question:

Let P1 be a parabola with vertex (3, 2) and focus (4, 4) and P2 be its mirror image with respect to the line x + 2y = 6. Then the directrix of P2 is x + 2y = _______.

Updated On: Sep 24, 2024
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 10

Solution and Explanation

The correct answer is 10
Focus = (4, 4) and vertex = (3, 2)
∴ Point of intersection of directrix with axis of parabola = A = (2, 0)
Image of A(2, 0) with respect to line
x + 2y = 6 is B(x2, y2)
\(∴\frac{x^2−2}{1}=\frac{y^2−0}{2}=\frac{−2(2+0−6)}{5}\)
\(∴B(x_2,y_2)=(185,165).\)
Point B is point of intersection of direction with axes of parabola P2.
∴ x + 2y = λ must have point
\((\frac{18}{5},\frac{16}{5})\)
∴ x + 2y = 10

Was this answer helpful?
1
0

Questions Asked in JEE Main exam

View More Questions

Concepts Used:

Parabola

Parabola is defined as the locus of points equidistant from a fixed point (called focus) and a fixed-line (called directrix).

Parabola


 

 

 

 

 

 

 

 

 

Standard Equation of a Parabola

For horizontal parabola

  • Let us consider
  • Origin (0,0) as the parabola's vertex A,
  1. Two equidistant points S(a,0) as focus, and Z(- a,0) as a directrix point,
  2. P(x,y) as the moving point.
  • Let us now draw SZ perpendicular from S to the directrix. Then, SZ will be the axis of the parabola.
  • The centre point of SZ i.e. A will now lie on the locus of P, i.e. AS = AZ.
  • The x-axis will be along the line AS, and the y-axis will be along the perpendicular to AS at A, as in the figure.
  • By definition PM = PS

=> MP2 = PS2 

  • So, (a + x)2 = (x - a)2 + y2.
  • Hence, we can get the equation of horizontal parabola as y2 = 4ax.

For vertical parabola

  • Let us consider
  • Origin (0,0) as the parabola's vertex A
  1. Two equidistant points, S(0,b) as focus and Z(0, -b) as a directrix point
  2. P(x,y) as any moving point
  • Let us now draw a perpendicular SZ from S to the directrix.
  • Then SZ will be the axis of the parabola. Now, the midpoint of SZ i.e. A, will lie on P’s locus i.e. AS=AZ.
  • The y-axis will be along the line AS, and the x-axis will be perpendicular to AS at A, as shown in the figure.
  • By definition PM = PS

=> MP2 = PS2

So, (b + y)2 = (y - b)2 + x2

  • As a result, the vertical parabola equation is x2= 4by.