Question:

Let $f:(0, \infty) \rightarrow R$ be given by $f(x)=\int\limits_{1 / x}^{x} e^{-\left(t+\frac{1}{t}\right)} \frac{d t}{t}$, then

Updated On: Aug 22, 2023
  • $f(x)$ is monotonically increasing on $[1, \infty$ )
  • $f(x)$ is monotonically decreasing on $(0,1)$
  • $f(x)+f\left(\frac{1}{x}\right)=0$, for all $x \in(0, \infty)$
  • $f\left(2^{x}\right)$ is an odd function of $x$ on $R$.
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Given that 

\(f\left(x\right)=\int\limits_{1/x}^{x} e^{-(t+\frac{1}{t})} d t\)

\( \frac{d}{dx}f(x) = \frac{e^{-x+\frac{1}{x}}}{x}\frac{dx}{dx}-\frac{e^{-(\frac1 x+x)}}{1/x}x \frac{d \frac{1}{x}}{dx}\)

\(\frac{e^{-(x+\frac{1}{x})}}{x} + xe^{-(x+\frac{1}{x})}x\frac{-1}{x^2}\)

\(e^{-(x+\frac{1}{x})} + \frac{1}{x}e^{-(x+\frac{1}{x})}\)

\(2e^{-(x+\frac{1}{x})}= 0\)

Hence, \(f(x)+\)\(f(\frac{1}{x}) = \) 

\[\int\limits_{1/x}^{x} \frac{e^{-(t+\frac{1}{t}})} {t}dt+\int\limits_{x}^{1/x} \frac{e^{-(t+\frac{1}{t}})}{t} d t\]\[\int\limits_{1/x}^{1/x} \frac{e^{-(t+\frac{1}{t})}}{t} d t=0\]

Now, 

\(f(2^x)+f(\frac{1}{2^x})=f(2^x)+f(2^x)=0\)

Therefore, \(f(2^x) \) is an odd function. 

Note, Let 2x= μ 

log2μ =x 

∴ f(2x) = h(x) an odd function 

Then h(-x) 

Was this answer helpful?
0
0

Questions Asked in JEE Advanced exam

View More Questions

Concepts Used:

Methods of Integration

Given below is the list of the different methods of integration that are useful in simplifying integration problems:

Integration by Parts:

 If f(x) and g(x) are two functions and their product is to be integrated, then the formula to integrate f(x).g(x) using by parts method is:

∫f(x).g(x) dx = f(x) ∫g(x) dx − ∫(f′(x) [ ∫g(x) dx)]dx + C

Here f(x) is the first function and g(x) is the second function.

Method of Integration Using Partial Fractions:

The formula to integrate rational functions of the form f(x)/g(x) is:

∫[f(x)/g(x)]dx = ∫[p(x)/q(x)]dx + ∫[r(x)/s(x)]dx

where

f(x)/g(x) = p(x)/q(x) + r(x)/s(x) and

g(x) = q(x).s(x)

Integration by Substitution Method

Hence the formula for integration using the substitution method becomes:

∫g(f(x)) dx = ∫g(u)/h(u) du

Integration by Decomposition

Reverse Chain Rule

This method of integration is used when the integration is of the form ∫g'(f(x)) f'(x) dx. In this case, the integral is given by,

∫g'(f(x)) f'(x) dx = g(f(x)) + C

Integration Using Trigonometric Identities