The correct answer is (D): \(-5050\)
\(x_m+1=x_m-(m+1)\)
\(x^2=x_1-2=-1-2=-3\)
\(x_3=x_2-3=-1-2-3=-6\)
Similarly,
\(x_n=-(1+2+3+...+n)=-\frac{n(n+1)}{2}\)
Hence \(x_{100}=-\frac{100(101)}{2}=-5050\)
Given,
\(x_1=-1\;and\;x_m=x_{m+1}+(m+1)\)
\(x_{m+1}=x_m-(m+1)\)
Put m value= 1, 2, 3, 4…..
m=1 and x1=-1 (given)
\(x_{2}=x_1-(2)\)
\(x_{2}=-1-2\)
Now m=2
\(x_{3}=x_2-(2+1)\)
\(x_{3}=x_2-3\) Now put x2 value
\(x_{3}=-1-2-3\)
Same for m=3,4,5,6…
\(x_{4}=-1-2-3-4\)
\(x_{5}=-1-2-3-4-5\)
\(x_{6}=-1-2-3-4-5-6\)
And so on,
\(x_{100}=-1-2-3-4-5-6....-100\)
\(x_{100}=-(1+2+3+4+5+6....+100)\)
Sum of n positive numbers \(\frac{n(n+1)}{2}\)
\(x_{100}=-\frac{100(100+1)}{2}\)
\(x_{100}=-50(101)\)
\(x_{100}=-5050\)
So, the correct option is (D): -5050