If A is a square matrix of order 3, then |Adj(Adj A2)| =
Match the following List -I (Complex) List II (Spin only Magnetic Moment)
List -I (Complex) | List II (Spin only Magnetic Moment) | ||
A) | [CoF6]3- | I) | 0 |
B) | [Co(C2O4)3]3- | II) | √24 |
C) | [FeF6]3+ | III) | √8 |
D) | [Mn(CN)6]3- | IV) | √35 |
V) | √15 |
the correct answer is:
If (h,k) is the image of the point (3,4) with respect to the line 2x - 3y -5 = 0 and (l,m) is the foot of the perpendicular from (h,k) on the line 3x + 2y + 12 = 0, then lh + mk + 1 = 2x - 3y - 5 = 0.
If a line ax + 2y = k forms a triangle of area 3 sq.units with the coordinate axis and is perpendicular to the line 2x - 3y + 7 = 0, then the product of all the possible values of k is
Enthalpy Change refers to the difference between the heat content of the initial and final state of the reaction. Change in enthalpy can prove to be of great importance to find whether the reaction is exothermic or endothermic.
dH = dU + d(PV)
The above equation can be written in the terms of initial and final states of the system which is defined below:
UF – UI = qP –p(VF – VI)
Or qP = (UF + pVF) – (UI + pVI)
Enthalpy (H) can be written as H= U + PV. Putting the value in the above equation, we obtained:
qP = HF – HI = ∆H
Hence, change in enthalpy ∆H = qP, referred to as the heat consumed at a constant pressure by the system. At constant pressure, we can also write,
∆H = ∆U + p∆V
To specify the standard enthalpy of any reaction, it is calculated when all the components participating in the reaction i.e., the reactants and the products are in their standard form. Therefore the standard enthalpy of reaction is the enthalpy change that occurs in a system when a matter is transformed by a chemical reaction under standard conditions.