Question:

Find the smallest number by which each of the following numbers must be divided to obtain a perfect cube: 
  1. 81 
  2. 128 
  3.  135 
  4.  192 
  5.  704

Updated On: Aug 27, 2024
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

(i) \(81\)
factorisation of 81
Prime factors of \(81\) =  \(3\times3\times3\times3\times\)
Here one factor \(3\) is not grouped in triplets.
Therefore \(81\) must be divided by \(3\) to make it a perfect cube.


(ii) \(128\)
Factorization of 128
Prime factors of \(128\) = \(2\times2\times2\times2\times2\times2\times2\times\)
Here one factor \(2 \) does not appear in a \(3’\)s group.
Therefore, \(128\) must be divided by \(2\) to make it a perfect cube.


(iii) \(135\)
factorisation of 135
Prime factors of \(135\) = \(3\times3\times3\times5\)
Here one factor \(5\) does not appear in a triplet.
Therefore, \(135\) must be divided by \(5\) to make it a perfect cube.


(iv) \(192\)
Factorization of 192
Prime factors of \(192\) = \(2\times2\times2\times2\times2\times2\times3\)
Here one factor \(3\) does not appear in a triplet.
Therefore, \(192\) must be divided by \(3\) to make it a perfect cube.


(v) \(704\)
Factorization of 704
Prime factors of \(704\) = \(2\times2\times2\times2\times2\times2\times11\)
Here one factor \(11\) does not appear in a triplet.
Therefore, \(704\) must be divided by \(11\) to make it a perfect cube.

Was this answer helpful?
1
0