The formula for EMI is:
\( \text{EMI} = \text{Loan Amount} \times \frac{(1 + r)^n \cdot r}{(1 + r)^n - 1} \).
Here:
\( r = \frac{\text{Annual Interest Rate}}{12} = \frac{6}{100 \cdot 12} = 0.005 \),
\( n = \text{Loan Tenure in Months} = 25 \times 12 = 300 \),
The given value \( \frac{(1.005)^{300} \cdot 0.005}{(1.005)^{300} - 1} = 0.0064 \).
The EMI for each property is calculated as:
\( \text{EMI} = \text{Loan Amount} \times 0.0064 \).
For Property P:
\( \text{Loan Amount} = 45,00,000 - 5,00,000 = 40,00,000 \)
\( \text{EMI} = 40,00,000 \times 0.0064 = 25,600 \)
For Property Q:
\( \text{Loan Amount} = 55,00,000 - 5,00,000 = 50,00,000 \)
\( \text{EMI} = 50,00,000 \times 0.0064 = 32,000 \)
For Property R:
\( \text{Loan Amount} = 65,00,000 - 10,00,000 = 55,00,000 \)
\( \text{EMI} = 55,00,000 \times 0.0064 = 35,200 \)
For Property S:
\( \text{Loan Amount} = 75,00,000 - 15,00,000 = 60,00,000 \)
\( \text{EMI} = 60,00,000 \times 0.0064 = 38,400 \)
Final Matching: (A) P (I) 25,600 (B) Q (III) 32,000 (C) R (IV) 35,200 (D) S (II) 38,400
Thus, the correct option is (2).