Let $f : [0,2] \rightarrow R$ be a function which is continuous on
$[0,2]$ and is differentiable on $(0,2)$ with $f(0) = 1$.
Let $F(x)= \int\limits_0^{x^2} \, f(\sqrt t)dt, \,$ for $\, x \in \, [0,2], if F'(x) \, = f'(x) , \forall $
$x \in \, (0,2) ,\,$ then $\, F(2)$ equals